36 research outputs found

    An Experimental mmWave Channel Model for UAV-to-UAV Communications

    Full text link
    Unmanned Aerial Vehicle (UAV) networks can provide a resilient communication infrastructure to enhance terrestrial networks in case of traffic spikes or disaster scenarios. However, to be able to do so, they need to be based on high-bandwidth wireless technologies for both radio access and backhaul. With this respect, the millimeter wave (mmWave) spectrum represents an enticing solution, since it provides large chunks of untapped spectrum that can enable ultra-high data-rates for aerial platforms. Aerial mmWave channels, however, experience characteristics that are significantly different from terrestrial deployments in the same frequency bands. As of today, mmWave aerial channels have not been extensively studied and modeled. Specifically, the combination of UAV micro-mobility (because of imprecisions in the control loop, and external factors including wind) and the highly directional mmWave transmissions require ad hoc models to accurately capture the performance of UAV deployments. To fill this gap, we propose an empirical propagation loss model for UAV-to-UAV communications at 60 GHz, based on an extensive aerial measurement campaign conducted with the Facebook Terragraph channel sounders. We compare it with 3GPP channel models and make the measurement dataset publicly available.Comment: 7 pages, 7 figures, 3 tables. Please cite it as M. Polese, L. Bertizzolo, L. Bonati, A. Gosain, T. Melodia, An Experimental mmWave Channel Model for UAV-to-UAV Communications, in Proc. of ACM Workshop on Millimeter-Wave Networks and Sensing Systems (mmNets), London, UK, Sept. 202

    Sl-EDGE: Network Slicing at the Edge

    Full text link
    Network slicing of multi-access edge computing (MEC) resources is expected to be a pivotal technology to the success of 5G networks and beyond. The key challenge that sets MEC slicing apart from traditional resource allocation problems is that edge nodes depend on tightly-intertwined and strictly-constrained networking, computation and storage resources. Therefore, instantiating MEC slices without incurring in resource over-provisioning is hardly addressable with existing slicing algorithms. The main innovation of this paper is Sl-EDGE, a unified MEC slicing framework that allows network operators to instantiate heterogeneous slice services (e.g., video streaming, caching, 5G network access) on edge devices. We first describe the architecture and operations of Sl-EDGE, and then show that the problem of optimally instantiating joint network-MEC slices is NP-hard. Thus, we propose near-optimal algorithms that leverage key similarities among edge nodes and resource virtualization to instantiate heterogeneous slices 7.5x faster and within 0.25 of the optimum. We first assess the performance of our algorithms through extensive numerical analysis, and show that Sl-EDGE instantiates slices 6x more efficiently then state-of-the-art MEC slicing algorithms. Furthermore, experimental results on a 24-radio testbed with 9 smartphones demonstrate that Sl-EDGE provides at once highly-efficient slicing of joint LTE connectivity, video streaming over WiFi, and ffmpeg video transcoding

    The new TAE - Alfvén Wave Active Excitation System at JET

    Get PDF
    After many years of successful operation, the JET saddle coil system will be dismantled during the 2004-2005 shutdown. A new antenna system has been designed and is being constructed to replace it and excite magneto-hydrodynamics modes in the Alfvén frequency range (10500kHz), keeping similar operational capabilities (IANT~30A, VANT~1kV, maximum power ~5kW). In addition to the constraints imposed by halo current and disruption-induced voltages and currents, the design must comply with the requirements of a remote handling installation. The physics basis, design principles and constraints will be presented along with the results of the coupling and engineering analysis, and a discussion of the possible extrapolation of such a system to ITER

    Status of EU\u27s contribution to the ITER EC system

    Get PDF
    The electron cyclotron (EC) system of ITER for the initial configuration is designed to provide 20MW of RF power into the plasma during 3600s and a duty cycle of up to 25% for heating and (co and counter) non-inductive current drive, also used to control the MHD plasma instabilities. The EC system is being procured by 5 domestic agencies plus the ITER Organization (IO). F4E has the largest fraction of the EC procurements, which includes 8 high voltage power supplies (HVPS), 6 gyrotrons, the ex-vessel waveguides (includes isolation valves and diamond windows) for all launchers, 4 upper launchers and the main control system. F4E is working with IO to improve the overall design of the EC system by integrating consolidated technological advances, simplifying the interfaces, and doing global engineering analysis and assessments of EC heating and current drive physics and technology capabilities. Examples are the optimization of the HVPS and gyrotron requirements and performance relative to power modulation for MHD control, common qualification programs for diamond window procurements, assessment of the EC grounding system, and the optimization of the launcher steering angles for improved EC access. Here we provide an update on the status of Europe’s contribution to the ITER EC system, and a summary of the global activities underway by F4E in collaboration with IO for the optimization of the subsystems
    corecore